
We generate genetic information for research, clini-
cal care and personal curiosity at exponential rates. 
Sequencing studies that include thousands of indi-
viduals have become a reality1,2, and new projects 
aim to sequence hundreds of thousands to millions 
of individuals3. Some geneticists envision whole-
genome sequencing of every person as part of routine  
health care4,5.

Sharing genetic findings is vital for accelerating 
the pace of biomedical discoveries and for fully real-
izing the promises of the genetic revolution6. Recent 
studies suggest that robust predictions of genetic pre-
dispositions to complex traits from genetic data will 
require the analysis of millions of samples7,8. Collecting 
cohorts at such scales is typically beyond the reach of 
individual investigators and cannot be achieved with-
out combining different sources. In addition, broad 
dissemination of genetic data promotes serendipitous 
discoveries through secondary analyses, which are nec-
essary to maximize use of such data for patients and the  
general public9.

One of the key issues of broad dissemination is find-
ing an adequate balance that ensures data privacy10. 
Prospective participants of scientific studies have 
ranked privacy of sensitive information as one of their 
top concerns and a major determinant of participa-
tion in a study11–13. Recently, public concerns regard-
ing medical data privacy halted a massive plan of the 
National Health Service in the United Kingdom to 
create a centralized health care database14. Protecting 
personal identifiable information is also a demand  
of various regulatory statutes in the United States and 
the European Union15. Data de-identification (that is, 

the removal of personal identifiers) has been suggested 
as a potential path to reconcile data sharing and privacy 
demands16, but is this approach technically feasible for 
genetic data?

This Review maps privacy breaching techniques 
that are relevant to genetic information and proposes 
potential counter-measures. We first categorize pri-
vacy breaching strategies (FIG. 1), discuss their underly-
ing technical concepts, and evaluate their performance 
and limitations (TABLE 1). We then present privacy-
preserving technologies, group them according to their 
methodological approaches and discuss their relevance 
to genetic information. As a general theme, we focus 
only on breaching techniques that involve data min-
ing and combining distinct resources to gain private 
information that is relevant to DNA data. Data cus-
todians should be aware that security threats can be 
much broader and can include cracking weak database 
passwords, classic techniques of hacking the server 
that holds the data, stealing of storage devices due to 
poor physical security and intentional misconduct of 
data custodians17–18 (see Chronology of Data Breaches). 
We do not include these threats here, as they have been 
extensively discussed in the computer security field19. 
In addition, this Review does not cover the potential 
implications of loss of privacy, which heavily depend on 
cultural, legal and socio-economical context and have 
been partly covered by the broad privacy literature20,21.

Identity tracing attacks
The goal of identity tracing attacks is to uniquely iden-
tify an anonymous DNA sample using quasi-identifiers 
— residual pieces of information that are embedded in 
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Abstract | We are entering an era of ubiquitous genetic information for research, clinical 
care and personal curiosity. Sharing these data sets is vital for progress in biomedical 
research. However, a growing concern is the ability to protect the genetic privacy of the 
data originators. Here, we present an overview of genetic privacy breaching strategies. We 
outline the principles of each technique, indicate the underlying assumptions, and assess 
their technological complexity and maturation. We then review potential mitigation 
methods for privacy-preserving dissemination of sensitive data and highlight different 
cases that are relevant to genetic applications.
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the data set. The success of the attack depends on the 
information content that the adversary can obtain from 
these quasi-identifiers relative to the size of the base 
population (BOX 1).

Tracing with metadata. Genetic data sets are typically 
published with additional metadata — such as basic 
demographic details, inclusion and exclusion criteria, 

pedigree structure and health conditions — that are cru-
cial both to the study and for secondary analyses. These 
pieces of metadata can be exploited to trace the identity 
of unknown genomes.

Unrestricted demographic information conveys sub-
stantial power for identity tracing. It has been estimated 
that the combination of date of birth, sex and five-digit 
zip code uniquely identifies >60% of individuals in the 

Figure 1 | An integrative map of genetic privacy breaching techniques. The map contrasts different scenarios, such 
as identifying de-identified genetic data sets, revealing an attribute from genetic data and unmasking of data. It also 
shows the interdependencies between the techniques and suggests potential routes to exploit further information 
after the completion of one attack. There are several simplifying assumptions (black circles). In certain scenarios (such 
as insurance decisions), uncertainty about the target’s identity within a small group of people could still be considered 
a success (assumption 1). For certain privacy harms (such as surveillance), identity tracing can be considered a success 
and the end point of the process (assumption 2). The complete DNA sequence is not always necessary (assumption 3).
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Safe Harbor
A standard in the US Health 
Insurance Portability and 
Accountability Act (HIPAA)  
rule for de‑identification of 
protected health information 
by removing 18 types of 
quasi‑identifiers.

United States22,23. In addition, there are extensive public 
resources with broad population coverage and search 
interfaces that link demographic quasi-identifiers to 
individuals, including voter registries, public record 
search engines (such as PeopleFinders) and social media. 
An initial study reported the successful tracing of the 
medical record of the Governor of Massachusetts using 
demographic identifiers in hospital discharge infor-
mation24. Another study reported the identification of 
30% of Personal Genome Project (PGP) participants by 
demographic profiling that included zip code and exact 
birthdates found in PGP profiles25.

Since the inception of the Health Insurance 
Portability and Accountability Act (HIPAA) Privacy 
Rule, dissemination of demographic identifiers has 
been the subject of tight regulation in the US health 
care system26. The Safe Harbor provision requires that the 
maximal resolution of any date field, such as hospital 
admission dates, is in years. In addition, the maximal 
resolution of a geographical subdivision is the first three 
digits of a zip code (for zip code areas with populations 
of >20,000). Statistical analyses of the census data and 
empirical health records have found that the Safe Harbor 
provision provides reasonable protection against identity 

tracing, assuming that the adversary has access only to 
demographic identifiers. The combination of sex, age, 
ethnic group and state of residence is unique in <0.25% 
of the populations of each of the US states27,28.

Pedigree structures are another piece of metadata that 
is included in many genetic studies. These structures con-
tain rich information, especially when large kinships are 
available29. A systematic study analysed the distribution of 
2,500 two-generation family pedigrees that were sampled 
from obituaries from a US town of 60,000 individuals30. 
Only the number (but not the order) of male and female 
individuals in each generation was available. Despite 
this limited information, ~30% of the pedigree struc-
tures were unique, which shows the large information  
content that can be obtained from such data.

Another vulnerability of pedigrees is combin-
ing demographic quasi-identifiers across records to 
enhance identity tracing despite HIPAA protections. 
For example, consider a large pedigree that shows the 
age and state of residence of all participants. The age 
and state of residence of each participant leak very 
minimal information, but knowing the ages of all first- 
and second-degree relatives of an individual mark-
edly reduces the search space. Moreover, after a single 

Table 1 | Categorization of techniques for breaching genetic privacy

Technique Maturation 
level*

Technical 
complexity‡

Example of auxiliary information Availability of 
auxiliary information§

Ref

Identity tracing attacks

Surname inference Level 4 Intermediate Records of Y chromosomes and surnames Intermediate to good 34

DNA phenotyping Level 2 Low Population registry of eye colour Poor 54

Demographic identifiers Level 4 Very low Population registry stratified by state Good 28

Pedigree structure Level 3 Low Family trees of the entire population Poor 30

Side-channel leaks Level 4 Intermediate NA Varies 25

Attribute disclosure attacks using DNA

n = 1 Level 4 Low NA NA 60

Genotype frequencies Level 3 Intermediate Exome Sequencing Project Good 62

Linkage disequilibrium Level 2 High 1000 Genomes Project Intermediate 133

Effect sizes Level 2 Intermediate NA NA 67

Trait inference Level 1 Low NA NA 68

Gene expression Level 3 High Genotype-Tissue Expression (GTEx) Project Poor 75

Completion attacks

Imputation of a masked marker Level 4 Low 1000 Genomes Project Good 77

Genealogical imputation of a 
single relative

Level 4 Low OpenSNP and Facebook profiles Poor 78

Genealogical imputation of 
multiple relatives

Level 4 High deCODE pedigree and DNA Poor 79

NA, not available. *Genetic privacy breaching techniques are classified into four maturation levels on the basis of the data used. For level 1, working principles are 
established using simulated data. Level  2 involves small-scale proof-of-concept experiments that use real data (typically only one data set) in a controlled 
environment, whereas level 3 involves large-scale experiments that use real data (typically more than one data set) in controlled environments. For level 4, breach of 
privacy was reported in a real scenario.‡Techniques of very low complexity do not require knowledge in genetics or special tools. Low-complexity techniques require 
genetic knowledge, and computation can be reasonably done on a regular computer. Existing tools are available for techniques of intermediate complexity, which 
require genetic knowledge, intermediate-scale processing of data and/or molecular techniques. High-complexity techniques require genetic knowledge and 
large-scale processing of data; it may also require molecular techniques. §Availability of auxiliary information refers to the level of existing public reference databases 
for the US population. For identity tracing attacks, it refers to the availability of organized lists that link identities and that extract pieces of information. For attribute 
disclosure attacks using DNA and for completion attacks, it refers to the existence of supporting reference data sets that are necessary to complete the attacks. Poor 
auxiliary information has highly fragmented supporting data that are not amenable to searches. Supporting data for intermediate-level information are harmonized 
and searchable but require some pre-processing. Supporting data for good information are searchable using existing tools or minimal pre-processing. 
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Haplotypes
Sets of alleles along the  
same chromosome.

individual in a pedigree has been identified, it is easy 
to link the identities of other relatives with their genetic 
data sets. The main limitation of identity tracing using 
pedigree structures alone is their low searchability. 
Family trees of most individuals are not publicly avail-
able, and their analysis requires indexing a large num-
ber of genealogical websites. One notable exception is 
Israel, where the entire population registry was leaked 
to the web in 2006, thus allowing the construction of 
multigeneration family trees of all Israeli citizens31.

Identity tracing by genealogical triangulation. Genetic 
genealogy attracts millions of individuals who are 
interested in their ancestry or in discovering distant 

relatives32. To that end, the community has developed 
impressive online platforms to search for genetic 
matches, which can be exploited by identity tracers. 
One potential route of identity tracing is surname 
inference from Y-chromosome data33,34 (FIG. 2). In 
most societies, surnames are passed from father to 
son, which creates a transient correlation with specific 
Y-chromosome haplotypes35,36. The adversary can take 
advantage of the Y chromosome–surname correla-
tion and compare the Y-chromosome haplotype of the 
unknown genome to haplotype records in recreational 
genetic genealogy databases. A close match with a fairly 
short time to the most common recent ancestor would 
indicate that the unknown genome probably has the 
same surname as the record in the database.

The power of surname inference stems from 
exploiting information from distant patrilineal relatives 
of the unknown individual with the genome of inter-
est. An empirical analysis estimated that 10–14% of 
US white male individuals from the middle and upper 
classes are subject to surname inference on the basis 
of scanning the two largest Y-chromosome genealogi-
cal websites using a built-in search engine34. Individual 
surnames are fairly rare in the population and, in most 
cases, a single surname is shared by <40,000 US male 
individuals34, which is equivalent to 13 bits of infor-
mation (BOX 1). In terms of identification, successful 
surname recovery is nearly as powerful as finding 
one’s zip code. Another feature of surname inference 
is that surnames are highly searchable. From public 
record search engines to social networks, numerous 
online resources offer query interfaces that generate 
a list of individuals with a specific surname. Surname 
inference has been used to breach genetic privacy in 
the past37–40. Several sperm donor conceived individu-
als, and adoptees successfully used this technique on 
their own DNA to trace their biological families. In the 
context of research samples, a recent study reported 5 
successful surname inferences from Illumina data sets 
of 3 large families that were part of the 1000 Genomes 
Project, which eventually exposed the identity of nearly 
50 research participants34.

The main limitation of surname inference is that 
haplotype matching relies on the comparison of 
Y-chromosome short tandem repeats. Currently, most 
sequencing studies do not routinely report these mark-
ers, and the adversary would have to process large-scale 
raw sequencing files with a specialized tool41. Another 
complication is false identification of surnames and 
inference of surnames that are spelling variants of the 
original one. Eliminating incorrect surname hits neces-
sitates access to additional quasi-identifiers, such as 
pedigree structure, and typically requires a few hours 
of manual work. Finally, in certain societies, a sur-
name is not a strong identifier, and its inference does 
not provide the same power for re-identification as  
in the United States. For example, 400 million people in  
China hold 1 of the 10 common surnames35, and the 
top 100 surnames cover almost 90% of the population42, 
which markedly reduces the use of surname inference 
for re-identification.

Box 1 | Entropy and the contribution of quasi-identifiers

Entropy measures the degree of uncertainty in the outcome of a random variable.  
One bit of entropy is equivalent to the uncertainty of tossing a fair coin. Two bits are 
equivalent to two independent tosses of a fair coin and so on. Zero bits of entropy is the 
lowest level and implies that there is no uncertainty. The reciprocal measure of entropy 
is information content, which quantifies the expected contribution of a new piece of 
data in reducing the entropy level.

Information content captures the average usefulness of quasi-identifiers for identity 
tracing. Consider an anonymous individual’s record in a study that randomly samples 
subjects from the US population. A priori, the adversary has 310 million equiprobable 
possibilities of a match, which translates to 28.2 bits of entropy. He or she can then gain 
~1 bit of information by inferring the individual’s sex, which reduces the entropy to 27.2. 
Complete identification of any person is guaranteed when the entropy reaches zero. 
The table below lists some possible quasi-identifiers and their maximal information 
content expectation for the general US population.

Several factors reduce the expected information content of quasi-identifiers from  
the maximal level. One possibility is that two quasi-identifiers are correlated. For 
example, after inference of a US zip code, obtaining the state of residence rarely adds 
new information. A second possibility is inaccurate inference of the quasi-identifier. 
Information theory posits a rapid decline of information content with deviations of  
the inferred quasi-identifier from the truth. Another possibility is low searchability  
of the quasi-identifier. For example, in the case that the adversary can only access a 
height registry of 100 random US individuals, even with perfect knowledge of height, 
he or she will recover close to zero bits of information.

Quasi-identifier Expected information 
content (bits)

Sex* 1.0

Ethnic group*‡ 1.4

Eye colour§ 1.4

Blood group (ABO and Rhesus systems)|| 2.2

State of residence* 5.0

Height¶ 5.0

Year of birth* 6.3

Day and month of birth# 8.5

Surname* 12.9

Zip code** 13.8

*Based on US Census data. ‡Based on self-classification field in the US Census: African 
American, Asian American, European American, Native American, Other race, and two or more 
races. §Perfect inferences of three eye colour groups (blue, brown and intermediate); data from 
Eye Color Distribution Percentages. ||Based on Stanford School of Medicine Blood Center. 
¶Assuming accurate measurement within 1-cm resolution and normal distribution with a 
standard deviation of 8 cm in the population. #Based on 400,000 births (see An analysis of the 
distribution of birthdays in a calendar year). **Data from ZipAtlas.
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An open research question is the use of non- 
Y-chromosome markers for genealogical triangulation. 
The Mitosearch and GEDmatch websites run open, 
searchable databases for matching mitochondrial and 
autosomal genotypes, respectively. Our expectation is 
that mitochondrial data will not be very informative 
for tracing identities. The resolution of mitochondrial 
searches is low owing to the small size of the mito-
chondrial genome, which means that a large number of 
individuals share the same mitochondrial haplotypes. 
In addition, matrilineal identifiers (such as surname 
or clan) are fairly rare in most human societies, which 
complicates the use of mitochondrial haplotype for 
identity tracing. By contrast, autosomal searches can 
be powerful. Genetic genealogy companies have started 
to market services for dense genome-wide arrays that 
enable the identification of distant relatives (on the 
order of third to fourth cousins) with fairly sufficient 
accuracy43. These hits would reduce the search space to 
no more than a few thousand individuals44. The main 
challenge of this approach would be to derive a list of 
potential people from a genealogical match. As stated 
above, family trees of most individuals are not publicly 
available; such searches are therefore demanding and 
would require indexing a large number of genealogical 
websites. With the growing interest in genealogy, this 
technique might be easier in the future and should be 
taken into consideration.

Identity tracing by phenotypic prediction. Several 
reports on genetic privacy have envisioned that predic-
tions of visible phenotypes from genetic data could be 
used as quasi-identifiers for identity tracing45,46. Twin 
studies have estimated high heritabilities for various 

visible traits, for example, height47 and facial morphol-
ogy48. In addition, recent studies show that age pre-
diction is possible from DNA specimens derived from 
blood samples49,50, but the applicability of these DNA-
derived quasi-identifiers for identity tracing has yet to 
be demonstrated.

A major limitation of phenotypic prediction is the 
fast decay of the identification power with small infer-
ence errors (BOX 1). Current genetic knowledge explains 
only a small extent of the phenotypic variability of most 
visible traits, such as height51, body mass index (BMI)52 
and face morphology53, which substantially limits their 
use for identification. For example, perfect knowl-
edge about height at 1-cm resolution conveys 5 bits of 
information. However, as current genetic knowledge 
can merely provide an explanation for 10% of height 
variability51, the adversary learns only 0.15 bits of infor-
mation. Predictions of face morphology and BMI are 
much worse8,53. The exceptions in visible traits are eye 
colour54 and age prediction49. Recent studies show a 
prediction accuracy of 75–90% of the phenotypic vari-
ability of these traits, but even these successes represent 
no more than 3–4 bits of information. Another chal-
lenge for phenotypic prediction is the low searchability 
of some of these traits. We are not aware of popula-
tion-wide registries of height, eye colour or face mor-
phology that are publicly accessible and searchable. 
However, future developments in social media might 
circumvent this barrier.

Identity tracing by side-channel leaks. Side-channel 
attacks exploit quasi-identifiers that are unintention-
ally encoded in the database building blocks and struc-
ture rather than the actual data that are meant to be 
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Figure 2 | A possible route for identity tracing. The route combines both metadata and surname inference to 
triangulate the identity of an unknown genome of a person in the United States (represented by the black silhouette). 
Without any information, there are ~300 million individuals that could match the genome, which is equivalent to 
28 bits of entropy. Inferring the sex by inspecting the sex chromosomes reduces the entropy by 1 bit. The adversary 
then uses the metadata to find the state of residence and the age, which reduces the entropy to 16 bits. Successful 
surname recovery (for example, using Ysearch) leaves only ~3 bits of entropy. At this point, the adversary uses public 
record search engines such as PeopleFinders to generate a list of potential individuals; he or she can use social 
engineering or pedigree structure to triangulate the person (represented by the red silhouette).
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Cryptographic hashing
A procedure that yields a 
fixed‑length output from any 
size of input in a way that is 
hard to determine the input 
from the output.

Dictionary attacks
Approaches to reverse 
cryptographic hashing  
by scanning only highly 
probable inputs.

Alice
A common generic name in 
computer security to denote 
party A.

Bob
A common generic name in 
computer security to denote 
party B.

Type 1 error
The probability of obtaining  
a positive answer from a 
negative item.

Linkage equilibrium
Absence of correlation 
between the alleles at two loci.

Power
The probability of obtaining  
a positive answer for a  
positive item.

Specificity
The probability of obtaining  
a negative answer for a 
negative item.

Linkage disequilibrium
(LD). The correlation between 
alleles at two loci.

Effect sizes
The contributions of alleles to 
the values of particular traits.

public. A good example of such leaks is the exposure 
of the full names of PGP participants from filenames 
in the database25. The PGP allowed participants to 
upload 23andMe genotyping files to their public pro-
file webpages. Although it seemed that these files do 
not contain explicit identifiers, after downloading and 
decompressing, the original filename — the default of 
which is the first and last names of the user — appeared. 
As most of the users did not change the default nam-
ing convention, it was possible to trace the identity of a 
large number of PGP profiles. The PGP now offers par-
ticipants instructions to rename files before uploading 
and warns them of possible hidden information that can 
expose their identities. Generally, certain types of files, 
such as Microsoft Office products, can embed deleted 
text or hidden identifiers55. Data custodians should be 
aware that mere scanning of the file content might not 
always be sufficient to ensure that all identifiers have 
been removed.

The mechanism to generate database accession num-
bers can also leak personal information. For example, 
in a top medical data mining contest, the accession 
numbers revealed the disease status of the patients, 
which was the aim of the contest56. In addition, a pat-
tern analysis of a large amount of public data revealed 
temporal and spatial commonalities in the assign-
ment system that allowed predictions of US Social 
Security numbers from quasi-identifiers57. Some 
suggested the assignment of accession numbers by 
applying cryptographic hashing to the participants’ iden-
tifiers, such as names or Social Security numbers58. 
However, this technique is vulnerable to dictionary 
attacks owing to the fairly small search space of the 
input. In general, it is advisable to add some sort of 
randomization to procedures that generate accession  
numbers.

Attribute disclosure attacks using DNA
Consider the following scenario: Alice interviews 
Bob for a certain position. After the interview, Alice 
recovers Bob’s DNA and uses the data to search a large 
genetic study of drug abuse. The study stores the DNA 
in an anonymous form, but a match between Bob’s 
DNA and one of the records reveals that Bob was a 
drug abuser. This short story illustrates the main 
concepts of attribute disclosure attacks using DNA 
(ADAD). The adversary gains access to the DNA sam-
ple of the target and uses the identified DNA to search 
genetic databases with sensitive attributes (for example, 
drug abuse). A match between the identified DNA and 
the database links the person and the attribute.

The n = 1 scenario. The simplest scenario of ADAD is 
when the sensitive attribute is associated with the geno-
typic data of the individual. The adversary can simply 
match the genotypic data that are associated with the 
identity of the individual to the genotypic data that are 
associated with the attribute. Such an attack requires 
only a small number of autosomal single-nucleotide 
polymorphisms (SNPs). Empirical data showed that a 
carefully chosen set of 45 SNPs is sufficient to provide 

matches with a type 1 error of 10−15 for most of the major 
populations across the globe59. Moreover, random sub-
sets of ~300 common SNPs yield sufficient informa-
tion to uniquely identify any person60. Therefore, an 
individual’s genome is a strong identifier. In general, 
ADAD is a theoretical vulnerability of essentially any 
individual-level, DNA-derived ‘omic’ data set.

Genome-wide association studies (GWASs) are 
highly vulnerable to ADAD. To address this issue, sev-
eral organizations, including the US National Institutes 
of Health (NIH), have adopted a two-tier access system 
for data sets of GWASs: a restricted access area that 
stores individual-level genotypes and phenotypes, and 
a public access area for high-level data summary statis-
tics of allele frequencies for all cases and controls61. The 
premise of this distinction was that summary statis-
tics enable secondary data use for meta-GWAS analy-
ses, although it was thought that this type of data is  
protected against ADAD.

The summary statistic scenario. A landmark study in 
2008 reported the possibility of ADAD on GWAS data 
sets that only consist of the allele frequencies of the 
study participants62. The underlying concept of this 
approach is that, with the target genotypes in the case 
group, the allele frequencies will be positively biased 
towards the target genotypes compared with the allele 
frequencies of the general population. A good illustra-
tion of this concept is the case of an extremely rare vari-
ation in the subject’s genome. Positive allele frequency 
of this variation in a small-scale study increases the 
likelihood that the target was part of the study, whereas 
zero allele frequency strongly reduces this likelihood. 
By integrating the slight biases in the allele frequen-
cies over a large number of SNPs, it is also possible to 
carry out ADAD with the common variations that are 
analysed in GWASs.

Subsequent studies extended the range of vulnerabil-
ities for summary statistics. One line of studies improved 
the test statistic in the original work and analysed its 
mathematical properties63–65. Under the assumption 
of common SNPs in linkage equilibrium, the improved 
test statistic is mathematically guaranteed to yield 
maximal power for any specificity level (BOX 2). Another 
group went beyond allele frequencies and showed 
that it is possible to exploit local linkage disequilibrium  
(LD) structures for ADAD66. The power of this 
approach stems from searching for the co-occurrence 
of two relatively uncommon alleles in different haplo-
type blocks that together create a rare event. Another 
study developed a method to exploit the effect sizes of 
GWASs that involve quantitative traits to detect the 
presence of the target67. A powerful development of this 
study is exploiting GWASs that use the same cohort for 
multiple phenotypes. The adversary repeats the identi-
fication process of the target with the effect sizes of each 
phenotype and integrates them to enhance the identi-
fication performance. After determining the presence 
of the target in a quantitative-trait study, the adver-
sary can further exploit the GWAS data to predict the  
phenotypes with high accuracy68.
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Positive predictive value
The probability that a positive 
answer belongs to a true 
positive.

Box 2 | The performance of ADAD using allele frequencies

The theoretical performance of attribute disclosure attacks using DNA (ADAD) with summary statistics is a complex 
function of the size of the study and the prior knowledge of the adversary124,125. To illustrate this point, consider an 
adversary that has access to the allele frequencies of a genome-wide association study (GWAS) of schizophrenia, 
which has a prevalence of 1%, in the United States126. Without any other prior knowledge, the adversary randomly 
obtains DNA of people from the US population and attempts to infer their schizophrenia status. When the study  
size (n) is small, the adversary enjoys higher power and specificity to discriminate between participants and 
non-participants than with larger study samples (see the figure, part a). However, with smaller studies, the adversary 
almost never encounters individuals that were part of the study. He or she keeps consuming resources to carry out 
the attack, only to implicate fairly few people. Moreover, attacks on non-participants can result in false positives and 
lower the positive predictive value of the attack. The adversary can compensate by increasing the specificity, but this 
will further reduce the number of people that can be implicated in the attack. Part b of the figure depicts the positive 
predictive value as a function of the number of individuals at risk when the only prior knowledge of the adversary is 
that the participants are in the United States. Intermediate-sized studies place risk on the largest number of 
individuals for most of the positive predictive values.

The overall performance trade-off depends on prior knowledge of the adversary and on the size of the study. The 
ADAD performance (that is, Matthews correlation coefficient between truth and disease prediction) is shown as a 
function of the number of individuals at risk when the prior knowledge of the adversary is that participants are in the 
United States (see the figure, part c). Compare this with the case in which the prior knowledge of the adversary is that 
participants are sampled from a US subpopulation of 10 million people (for example, the adversary knows that a 
schizophrenia study enrolled only adults with Hispanic ancestry that live in California) (see the figure, part d). 
Restricting the ADAD efforts to this specific demographic group increases the accuracy for all study sizes but in 
different proportions. As a rule of thumb, ADAD performs best when the adversary can narrow down the base 
population from which participants were sampled (such as with studies of ethnic minorities or in a specific 
geographical region) or when detailed inclusion criteria are given.
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Expression quantitative 
trait locus
(eQTL). A genetic variant 
associated with variability  
in gene expression.

Genotype imputation
A class of statistical techniques 
to predict a genotype from 
information on surrounding 
genotypes.

The actual risk of ADAD has been the subject of 
intense debate. Following the original study in 2008 
(REF. 62), the NIH and other data custodians moved their 
GWAS summary statistic data from public databases 
to access-controlled databases, such as the database of 
Genotypes and Phenotypes (dbGaP)69. A retrospective 
analysis found that significantly fewer GWASs publicly 
released their summary statistic data after the discov-
ery of this attack70. Currently, most of the studies pub-
lish summary statistic data on 10–500 SNPs, which is 
compatible with one suggested guideline to manage 
risk68. However, some researchers have warned that 
these policies are too harsh71. There are several practical 
complications that the adversary needs to overcome to 
launch a successful attack, such as access to the target’s 
DNA data72, and accurate matching between the target 
ancestries and those listed in the reference database73. 
Failure to address any of these prerequisites can severely 
affect the performance of the ADAD. In addition, for a 
range of GWASs, the associated attributes are neither 
sensitive nor private (for example, height). Thus, even 
if ADAD occurs, the impact on the participant should 
be minimal. A recent NIH workshop has proposed the 
release of summary statistics as the default policy and 
the development of an exemption mechanism for studies 
with increased risk due to the sensitivity of the attribute 
or the vulnerability level of the summary data74.

The gene expression scenario. Databases such as the 
NIH’s Gene Expression Omnibus (GEO) publicly hold 
hundreds of thousands of gene expression profiles from 
individuals that are linked to a range of medical attrib-
utes. A recent study proposed a potential route to exploit 
these expression profiles for ADAD75. The method 
starts with a training step that uses a standard expression  
quantitative trait locus (eQTL) analysis with a reference 
data set. The goal of this step is to identify several hun-
dred strong eQTLs and to learn the distributions of 
expression level for each genotype. Next, the algorithm 
scans the public expression profiles. For each eQTL, it 
uses a Bayesian approach to calculate the probability dis-
tributions of the genotypes given the expression data. 
Last, the algorithm matches the target’s genotype with the 
inferred allelic distributions of each expression profile 
and tests the hypothesis that the match is random. If the  
null hypothesis is rejected, then the algorithm links 
the identity of the target to the medical attribute in the 
gene expression experiment. This ADAD technique 
has the potential for high accuracy in ideal conditions.  
On the basis of large-scale simulations, the authors 
predicted that the method can reach a type 1 error of 
10−5 with a power of 85% when tested on an expression  
database of the entire US population75.

There are several practical limitations to ADAD with 
expression data. Although the training and inference 
steps can work with expression profiles from different 
tissues, the method reaches its maximal power when 
the training and inference use eQTLs from the same 
tissue. Additionally, there is substantial loss of accu-
racy when the expression data in the training phase and 
those in the inference phase are collected using different 

technologies. Another complication is that, to fully exe-
cute the technique on a large database such as the GEO, 
the adversary will need to manage and process substan-
tial amounts of expression data. The NIH did not issue 
any changes to their policies regarding sharing expression  
data from human subjects.

Completion attacks
Completion of genetic information from partial data is 
a well-studied task in genetic studies and is known as  
genotype imputation76. This method takes advantage of the 
LD between markers and uses reference panels with com-
plete genetic information to restore missing genotypic 
values in the data of interest. The very same strategies 
enable the adversary to expose certain regions of interest 
when only partial access to the DNA data is available. 
In a famous example of a completion attack, a recent 
study showed that it is possible to infer James Watson’s 
predisposition for Alzheimer’s disease from the apolipo-
protein E (APOE) locus despite masking of this gene77. As 
a result of this study, a 2-Mb segment around the APOE  
gene was removed from Watson’s published genome.

In some cases, completion techniques also enable 
the prediction of genomic information when there is no 
access to the DNA of the target. This technique is possible 
when genealogical information is available in addition to 
genetic data. In the basic setting, the adversary obtains 
access to a single genetic data set of a known individual. 
He or she then exploits this information to estimate 
genetic predispositions for relatives whose genetic infor-
mation is inaccessible. A recent study showed the feasi-
bility of this attack by taking advantage of self-identified 
genetic data sets from openSNP78, which is an Internet 
platform for public sharing of genetic information. Using 
Facebook searches, the research team was able to find rel-
atives of the individuals that self-identified their genetic 
data sets. Next, the team predicted the genotypes of 
these relatives and estimated their genetic predisposition  
to Alzheimer’s disease using a Bayesian approach.

In the advanced setting, the adversary has access 
to the genealogical and genetic information of several 
relatives of the target79. The algorithm finds relatives 
of the target who donated their DNA to the reference 
panel and who reside on a unique genealogical path 
that includes the target, for example, a pair of half-first 
cousins when the target is their grandfather. A shared 
DNA segment between the relatives indicates that the 
target has the same segment. By scanning more pairs 
of relatives that are connected through the target, it is 
possible to infer the two copies of autosomal loci and 
collect more genomic information on the target without 
any access to his or her DNA. This approach is more 
accurate than the basic setting and enables genotypes 
of more distant relatives to be inferred. In Iceland, 
deCODE genetics took advantage of their large refer-
ence panel and genealogical information to infer genetic 
variants of an additional 200,000 living individuals who 
never donated their DNA80. In May 2013, Iceland’s Data 
Protection Authority prohibited the use of this technique 
until consent is obtained from the individuals who are 
not part of the original reference panel.
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Application programming 
interface
(API). A set of commands  
that specify the interface  
with a data set or software 
applications.

Mitigation techniques
Most of the genetic privacy breaching approaches pre-
sented above require a background in genetics and 
statistics and, importantly, a motivated adversary. One 
school of thought posits that these practical complexi-
ties markedly diminish the probability of an adverse 
event81,82. In this view, an appropriate mitigation strategy 
is to simply remove obvious identifiers from the data 
sets before publicly sharing the information. In the field 
of computer security, this risk management strategy is 
called security by obscurity. The opponents of security 
by obscurity posit that risk management schemes based 
on the probability of an adverse event are fragile and 
short lasting83. Technologies only get better with time, 
and what is technically challenging but possible now will 
be much easier in the future. Known in cryptography as 
Shannon’s maxim84, this school of thought assumes that 
the adversary exists and is equipped with the knowledge 
and means to execute the breach. Robust data protection 
is therefore achieved by explicit design of the data access 
protocol rather than by relying on the small chances of 
a breach85.

Access control. Privacy risks are both amplified and more 
uncertain when data are shared publicly with no record 
of who accesses it. An alternative is to place sensitive 
data in a secure location and to screen the legitimacy 
of the applicants and their research projects by special-
ized committees. After approval has been granted, the  
applicants are allowed to download the data under  
the conditions that they will store it in a secure location 
and will not attempt to identify individuals. In addi-
tion, the applicants are required to file periodic reports 
about the use of such data and any adverse events. This 
approach is the ‘cornerstone’ of dbGAP61,86. On the basis 
of periodic reports by users, a retrospective analysis of 
dbGAP access control has identified 8 data management 
incidents of ~750 studies, most of which involved non-
adherence to the technical regulations, and there was no 
report of breaching the privacy of participants87.

Despite the absence of privacy breaches so far, some 
have criticized the lack of real oversight once the data 
are in the hand of the applicants88. An alternative model 
uses a trust-but-verify approach, in which users cannot 
download the data without restriction but, on the basis 
of their privileges, may execute certain types of que-
ries, which are recorded and audited by the system89,90. 
Supporters of this model state that monitoring has the 
potential to deter malicious users and to facilitate early 
detection of adverse events. One technological challenge 
is that audit systems usually rely on anomalous behav-
iour to detect adversaries91. It has yet to be proved that 
such methods can reliably distinguish between legiti-
mate and malicious use of genetic data. Auditing also 
requires that any interaction with the genetic data sets 
is done using a standard set of application programming  
interface (API) calls that can be analysed. By contrast, 
most of the genomic formats currently operate using 
more liberal text parsing approaches, but several efforts 
in the community have been made to standardize 
genomic analyses92,93.

Another model of access control is allowing the origi-
nal participants to grant access to their data instead of 
delegating this responsibility to a data access commit-
tee94,95. This model centres on dynamic consent based 
on ongoing communication between researchers and 
participants regarding data access. Supporters of this 
model state that this approach streamlines the consent 
process, enables participants to modify their preferences 
throughout their lifetimes and can promote greater 
transparency, higher levels of participant engagement 
and oversight. An example of such an effort is Platform 
for Engaging Everyone Responsibly (PEER). In this set-
ting, Private Access operates a service that manages the 
access rights and mediates the communication between 
researchers and participants without revealing the iden-
tity of the participants. A trusted agent, Genetic Alliance, 
holds the participants’ health data, offers stewardship 
regarding privacy preferences and grants access to data 
on the basis of participants’ decisions. Participant-based 
access control is still a fairly new method. As data cus-
todians gain more experience with such a framework, 
a better picture will emerge regarding its use as an 
alternative for risk–benefit management compared to  
traditional access control methodologies.

Data anonymization. The premise of anonymity is the 
ability to be ‘lost in the crowd’. One line of studies sug-
gested restoring anonymity by restricting the granularity 
of quasi-identifiers to the extent that no record in the 
database has a unique combination of quasi-identifiers. 
One heuristic is k-anonymity96, in which attribute values 
are generalized or suppressed such that for each record 
there are at least (k – 1) records with the same combi-
nation of quasi-identifiers. To maximize the use of the 
data for subsequent analyses, the generalization process 
is adaptive. Certain records will have a lower resolution 
depending on the distribution of the other records, and 
certain data categories that are too unique are suppressed 
entirely. There is a strong trade-off in the selection of 
the value of k; high values better protect privacy but, 
at the same time, reduce the use of the data. As a rule  
of thumb, k = 5 is commonly used in practice97. Most of  
the k-anonymity work centres on protecting demo-
graphic identifiers. For genetic data, one study sug-
gested a two-anonymity protocol by generalizing the 
four nucleotides in DNA sequences into broader types 
of biochemical groups such as pyrimidine and purines98. 
However, the use of such data for broad genetic appli-
cations is unclear. Furthermore, k-anonymity is vulner-
able to ADAD when the adversary has prior knowledge 
about the presence of the target in the database99,100. 
Thus, although this heuristic is easy to comprehend, its 
privacy properties and relevance to genomic studies are 
in question.

Differential privacy is an emerging methodology 
for privacy-preserving reporting of results, primarily of 
summary statistics101 (BOX 3). In contrast to k-anonymity,  
this method guarantees privacy against an adversary 
with arbitrary prior knowledge. Differential privacy 
operates by adding ‘noise’ to the results before their 
release. The algorithm tunes the amount of noise such 
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χ2-statistic
A measure of association in 
case–control genome‑wide 
association studies.

Read mapping
A computationally intensive 
step in the analysis of 
high‑throughput sequencing to 
find the location of a short 
DNA sequence (string) in the 
genome.

Edit distance
The total number of insertions, 
deletions and substitutions 
between two strings.

that the reported results will be statistically indistin-
guishable from similar reported results that would have 
been obtained if a single record had been removed from 
the original data set. This way, an adversary with any 
type of prior knowledge can never be sure whether 
a specific individual was part of the original data set 
because the data release process produces results that 
are almost exactly the same if the individual was not 
included. Owing to its theoretical guarantees and trac-
table computational demands, differential privacy has 
become an active research area in computer science and 
statistics. In perhaps the best-known large-scale imple-
mentation, the US Census Bureau uses this technique 
for privacy-preserving release of data in the online 
OnTheMap tool102.

In the context of genetic privacy, several studies 
have explored the differential private release of com-
mon summary statistics of GWAS data (such as the 
allele frequencies of cases and controls, χ2‑statistic and  
P  values103,104) or shifting the original locations of 
variants105. Currently, these techniques require a large 
amount of noise even for the release of a GWAS statis-
tics from a small number of SNPs, which renders these 
measures impractical (see Supplementary information 
S1 (figure)). It is unclear whether there is a perturbation 
mechanism that can add much smaller amounts of noise 
to GWAS results while satisfying the differential privacy 
requirement, or whether perturbation can be shown to 
be effective for privacy preservation under a different 
theoretical model.

Cryptographic solutions. Modern cryptography brought 
new advances to data dissemination beyond the tradi-
tional use of encrypting sensitive information and dis-
tributing the key to authorized users. These solutions 
enable well-defined usability of data while blocking 
unauthorized operations. Different from solutions 

discussed in the previous section, cryptographic solu-
tions enable computing exact answers of the protected 
data sets.

One line of cryptographic work considers the 
problem of privacy-preserving approaches that out-
source computation on genetic information to third 
parties. For example, with the advent of ubiquitous 
genetic data, patients (or their physicians) will interact 
throughout their lives with a range of online genetic 
interpretation applications, such as Promethease, 
which increases the chance of a privacy breach. Recent 
cryptographic work has suggested homomorphic 
encryption (BOX 4) for secure genetic interpretation106. 
In this method, users send encrypted versions of their 
genomes to the cloud. The interpretation service can 
access the cloud data but does not have the key; there-
fore, it cannot read the plain genotypic values. Instead, 
the interpretation service executes the risk prediction 
algorithm on the encrypted genotypes. Owing to the 
special mathematical properties of the homomorphic 
cryptosystem, the user simply decrypts the results 
given by the interpretation service to obtain the risk 
prediction. This way, the user does not expose geno-
types or disease susceptibility to the service provider, 
and interpretation companies can offer their service to 
users who are concerned about privacy. Preliminary 
results have highlighted the potential feasibility of this 
scheme107. A proof-of-concept study encrypted the var-
iants of an individual in the 1000 Genomes Project and 
simulated a secure inference of heart disease risk on  
the basis of 23 SNPs and 17 environmental factors107. The  
total size of the encrypted genome was 51 gigabytes, 
and the risk calculation took 6 minutes on a standard 
computer. The current scope of risk prediction models 
is still narrow, but this approach might be amenable to 
future improvements.

Cryptographic studies have also considered the 
task of outsourcing read mapping without revealing any 
genetic information to the service provider108–110. The 
basis of some of these protocols is secure multiparty 
computation (SMC). SMC allows two or more enti-
ties, each of which has some private data, to execute a 
computation on these private inputs without revealing 
the input to each other or disclosing it to a third party. 
In one classic example of SMC, two individuals can 
determine who is richer without either one revealing 
their actual wealth to the other111. Earlier studies sug-
gested SMC versions for edit distance-based mapping of 
DNA sequences that does not reveal their content108,109. 
A more recent study proposed a privacy-preserving 
version of the popular seed-and-extend algorithm110, 
which serves as the basis of several high-throughput 
alignment tools110,112. The privacy-preserving version 
is a hybrid: the seeding part is securely outsourced to 
a cloud, in which a cryptographic hashing hides the 
actual DNA sequences while permitting string match-
ing. The cloud results are streamed to a local trusted 
computer that carries out the extension part. By adjust-
ing the underlying parameters of the seed-and-extend 
algorithm, this method puts most of the computation 
burden on the cloud. Experiments with real sequencing 

Box 3 | A mathematical introduction to differential privacy

Differential privacy seeks to ensure that no single individual’s attributes can affect the 
output of the data release mechanism too much. If an individual’s attributes only have a 
minimal effect on the output, then the adversary cannot use the output to accurately 
infer those inputs. It is necessary and sufficient to consider the impact of adding or 
dropping an individual from the data set altogether, rather than the effect of their 
attributes.

Differential privacy randomizes the released data. Let D be the original data set and 
Dʹ be the data set with any single user record removed. Differential privacy requires 
that the output distributions that correspond to D and Dʹ are close throughout the 
output space101. A privacy parameter (ε) quantifies the difference of the distributions 
and hence the level of information leakage. Low values of ε such that eε ≅ 1 + ε are 
considered more secure, but they typically come at the expense of data utility.  
Practical values of ε are still in question, but several models have been proposed127,128.

A simple addition of ‘noise’ or randomness to the true output satisfies the requirement 
above. Let t(D) be the summary statistic function that operates on the input data set, 
such as mean, median or the number of individuals with a specific property. f(D) = t(D) + z 
is called ε-differentially private if z is randomly drawn from a Laplace distribution with a 
mean of zero and a scale of S/ε, where S is the sensitivity (that is, a bound on how much 
a single record can affect the output of t)129. For example, the mean of a binary attribute 
has sensitivity of 1/n, where n is the number of records in D. Thus, by analysing the 
summary statistic function and a desired privacy level (ε), the data custodian can add 
the appropriate level of noise.
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data showed that the cloud performs >95% of the com-
putation efforts. In addition, the secure algorithm takes 
only 3.5× longer than a similar insecure implementa-
tion, which suggests a tractable ‘price tag’ to maintain 
privacy.

Beyond outsourcing of computation, several studies  
designed cryptographically secure algorithms for 
searching genetic databases. One study suggested 
searchable genetic databases for forensic purposes that 
allow only going from genetic data to identity but not 
the other way round113. The forensic database stores the  
individuals’ names and contact information in an 
encrypted form. The key for each entry is the corre-
sponding individual’s genotypes. This way, knowing 
genotypic information (for example, from a crime 
scene) can reveal the identity but not vice versa. In addi-
tion, to tolerate genotyping errors or missing data, the 
study suggested a ‘fuzzy’ encryption scheme in which a 
decryption key can approximately match the original 
key. Another cryptographic protocol proposed match-
ing genetic profiles between two parties for paternity 
tests or carrier screening without exposing the actual 
genetic data114,115. A smart-phone-based implementa-
tion was presented for one version of this algorithm116. 
A recent study suggested a scalable approach for find-
ing relatives using genome-wide data without disclosing 
the raw genotypes to a third party or to other partici-
pants117. First, users collectively decide the minimal 
degree of relatedness they wish to accept. Next, each 
user posts a secure version of his or her genome to a 
public repository using a fuzzy encryption scheme. 

Users then compare their own secure genome to the  
secure genomes of other users. Comparison of two 
encrypted genomes reveals no information if the 
genomes are farther than the threshold degree of relat-
edness; otherwise, it reveals the exact genetic distance. 
An evaluation of the efficacy of this approach using 
experiments with hundreds of individuals from the 
1000 Genomes Project showed that second-degree  
relatives can reliably find each other117.

A major open question is whether cryptographic 
protocols can facilitate data sharing for research pur-
poses. Cryptographic schemes have so far focused on 
developing protocols for GWAS analyses without the 
need to reveal individual-level genetic data. One study 
presented a scheme in which genetic data and compu-
tation of GWAS contingency tables are securely out-
sourced through homomorphic encryption to external 
data centres118. A trusted party (for example, the NIH) 
acts as a gateway that accepts requests from researchers 
in the community, instructs the data centres to carry out 
computation on the encrypted data, and decrypts and 
disseminates the GWAS results back to the researchers. 
A more recent study tested a scheme to generate GWAS 
summary statistics without a trusted party using only 
SMC between the data centres119. Another study evalu-
ated the outsourcing of GWAS analyses to a commer-
cially available tamper-resistant hardware120. Different 
from the schemes above118,119, the individual-level geno-
types are decrypted as part of the GWAS summary sta-
tistic computation, but the exposure occurs for a short 
amount of time in a secure hardware environment, 
which prevents any leakage. All of the cryptographic 
GWAS schemes above suffer from one common draw-
back: the protocols produce summary statistics, which 
are theoretically amenable to ADAD methods. So far, 
cryptography has yet to devise a comprehensive data 
sharing solution for GWASs.

Conclusions
In the past few years, a large number of studies have 
suggested that a motivated, technically sophisticated 
adversary is capable of exploiting a wide range of 
genetic data. On the one hand, with the constant inno-
vation in genetics and the rapid accumulation of online 
information, we can expect that new privacy breaching 
techniques will be discovered in the next few years and 
that technical barriers to existing attacks will diminish. 
On the other hand, privacy-preserving strategies for 
data dissemination are an active area of research. Rapid 
progress has been made, and powerful frameworks such 
as differential privacy and homomorphic encryption are 
now part of the mitigation strategy. At least for certain 
tasks in genetics, there are protocols that preserve the 
privacy of individuals. However, protecting privacy 
is only one aspect of the solution. Lessons from com-
puter security have highlighted that usability is a key 
component for the wide adoption of secure protocols. 
Successful implementations should hide unnecessary 
technical details from the users, minimize the compu-
tational overhead and enable legitimate research121,122. 
We have yet to fully achieve this aim.

Box 4 | Homomorphic encryption

Homomorphic encryption is an area of cryptography that has great potential for certain 
types of privacy-preserving computation. It is best explained by the following analogy. 
Alice possesses raw gold and wants to create a necklace, but she is not equipped with 
the knowledge or tools to do so. Bob is a skilled goldsmith but has an unclear 
reputation. Using homomorphic encryption, Alice sets up a securely locked glovebox 
with the raw gold. Bob uses the gloves to construct the jewellery without unlocking the 
box. After that, Alice receives the glovebox and opens the lock with her key. The raw 
gold can be thought of as genotypes, Bob as an interpretation service and the necklace 
as disease risk status.

Homomorphic encryption creates the ‘glovebox’ by adding additional mathematical 
properties besides the basic encryption and decryption operations in traditional 
cryptographic protocols. This property takes a regular function (y) that operates on 
plaintext (that is, genotypes) — for example, y(M
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) yields exactly the same answer as 

calculating the original function with the corresponding plaintext, which is 
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2
 in this example. In this way, Bob can compute secure functions on 

the ciphertext, and Alice can decrypt his answer to obtain the result.
Until recently, cryptographic studies achieved encrypted versions of very basic 

algebraic operations. One example is the Paillier cryptosystem130, which supports the 
addition of plaintexts and multiplication by a constant to be carried out on ciphertexts. 
Such narrow designs are called partially homomorphic encryption. They operate 
relatively fast and, despite their limitations, might prove sufficient for a wide range of 
computations on genotypes owing to the additive properties of genetic 
predispositions131. A breakthrough in 2009 established a fully homomorphic encryption 
scheme that supports calculating arbitrary functions on the plaintext132. This innovation 
is not yet efficient in terms of computational time, but further developments can 
complete the collection of secure functions in genetic epidemiology.
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